We analyze the spectra of high-temperature Fe XXIV lines observed by the Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) during the impulsive phase of the X8.3-class flare on 2017 September 10. The line profiles are broad, show pronounced …
We analyze the spectra of high-temperature Fe XXIV lines observed by the Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) during the impulsive phase of the X8.3-class flare on 2017 September 10. The line profiles are broad, show pronounced …
An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 ̊A show clear oscillations with a period of ~25 s. …
An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 ̊A show clear oscillations with a period of ~25 s. …
With observations from the Interface Region Imaging Spectrograph, we track the complete evolution of ~11 MK evaporation flows in an M1.1 flare on 2014 September 6 and an X1.6 flare on 2014 September 10. These hot flows, as indicated by the …
With observations from the Interface Region Imaging Spectrograph, we track the complete evolution of ~11 MK evaporation flows in an M1.1 flare on 2014 September 6 and an X1.6 flare on 2014 September 10. These hot flows, as indicated by the …
Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations …
Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations …